2018年辽宁高考数学试卷试题及解析(WORD版)
2018高考数学 分享_2018年高考数学试题分析
2018高考数学 分享_2018年高考数学试题分析
2018高考数学 分享_2018年高考数学试题分析
2015年辽宁数学文科试卷首次采用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。
以往辽宁的数学自主命题卷,都是在选择一题与填空的一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,2015年的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,2015年的`平均分也会比有所提高。
本溪市中学的数学老师介绍,2015年高考数学卷,比较适合基础扎实的中等学生答卷。同时,尖子生也能发挥出应有的水平。但是拿到真正的高分也并非易事,因为2015年的试题在命题形式上更加新颖灵活,有一定创新。
理科数学试卷中,解析题第17题是数形结合题,第18题是茎叶图,和往常略有变化。19题立体几何中的问也出现了较为冷门的作图题。平时考查立体几何的首问时,以证明平行、垂直或是求体积居多,作图题平时训练相对少,有些考生因为陌生而感到不适应。
总体来说,2015年的语文与数学科目的总体风格都是着重考生对知识的综合掌握与运用能力,在维持试卷难度系数总体平衡的情况下,以更加灵活的命题考察学生的应变与知识运用能力。
2018年四川高考数学试卷试题及解析(WORD版)
全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。
一、重视教材与基础,突出核心内容
试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。
全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。
试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。
全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。
三、关注探究与创新,体现课改理知识整合念
试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以采用“联系几何直观—探索解题思路—提出合情猜想—构造辅助函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。
2018年广东高考数学卷难道怎么样,广东高考数学试卷难不难
文科数学考生不熟悉题型,计算量大
“好难啊,只能听天由命了。”西关培英中学的考生一见到老师就哭诉。就连华师附中的汤同学,被问到考得怎样,也是表情凝重,连连摇头,只意味深长地说了一句“一言难尽”。
“难度比以往确实上升。计算量又大,概率题都把我绕晕了,时间特别紧。”有考生直接调侃道:“上午漫画作文题的分数,就是在预示我的数学成绩。”
采访了解到,由于全国卷的题目,即使之前已经进行了训练,但有些题型广州的考生还是看不懂。考文科数学的刘同学表示:“难度确实比以往高,计算量比较大,好几道题第二问都不够时间写”。据了解,往年文科数学的道大题一般是三角函数,但是今年换成了数列题,立体几何也有创新,今年考了投影的知识点,概率题文字量也比较大。
“爸,我可能要复读了。”六中的李同学考完对守候在门口多时的父亲说,她哽咽地说,连几何、概率这样普遍较好入手的题目都很不一样,难以读懂。
理科数学难度系数比往年高两个档次
至于理科考生,对数学也是“哀嚎”一片。很多考生反映这次概率题看不懂,但平时喜欢数学的.刘同学则认为,可能是题目文字较多,需要花费较多时间来分析,其实不算难。”他认为,真正很难的是解析几何和函数导数。“解析几何一般考查椭圆形,双曲线,抛物线和圆,需要自己画图,做完问,后面完全不会了。
有执信的考生反映,虽然试卷选择题部分的考点比较基础,但后面的大题却有点不按“套路”出牌。“数学的难度系数与往年比简直提升了两个档次。”执信考生范同学告诉记者,大题部分和平时相比题目很新。“虽然选择题难度比想象中简单,但其他题计算量偏大,尤其是后面几道大题,立体几何、概率和函数等,都不容易,很耗时间。”
立尚教育高考研(课程)究院数学名师马健伦认为,文科数学和理科数学根据全国卷难度而言,不算太难,但较以前广东卷难度而言,难度却提高了不少。“大部分是常规题型和难度,但不少题目都1.选择题第10题,改变了以往一贯的考查思路——考查函数和零点的关系,巧妙地将常见的考生熟悉二次函数和零点的关于与三次函数的图象结合,体现了稳中创新的特点;有创新,如果广东考生平常练习少的话,就会因为看不懂而难以下手。
2018年海南高考数学试卷试题及解析(WORD版)
2015年海南高考数学科目的考试结束,很多同学都反映难度在中等偏上。专业的数学老师怎么评价这份高考试题?南海网记者专访了海南华侨中学特级教师、正高级教师、省突出贡献专家李红庆老师,以及海南华侨中学数学教师、省骨干教师史利红老师,请他们对数学卷试题特点、难易程度进行专业点评。
老师给这次高考数学的试题做出了总体评价:遵循考纲与说明要求,注意设计创新题型,考查学生数学素养,注重能力立意,突出考查考生的五个能力与两个意识,并注重体现数学的学科价值和思辩价值。试题与往年相比在结构与难度上均保持稳定并略有下降,体现了较好的信度、效度,适当的灵活度和较强的区分度。尽管感觉比往年难度有所下降,但题目设计新颖,如空间几何;命题也没有落下套路,如文、理第17题仍然考查解三角形,而没有考查数列。
老师们认为,本次数学考试的文理科试题都比较有新意,考察了学生的能力和逻辑思维,主要有以下四个特点:
一、注意设计创新题型考查学生数学素养
数学试题选取素材合理,设计创新题目的情境,能灵活、综合地考查基础知识,充分体现了对基础内容考查的.全面性、综合性和基础性。如文科第11题设计考查余弦定理,文、理据了解,根据2007年高考数学大纲,有几个知识点的要求降低,如三角函式、立体几何两个模组的考试要求有所降低。对易、中、难题的比例有了更明确的规定,以容易题、中档题为试题主体,较难题只占30%。有关专家认为,今年数学大纲总体保持平稳,并在平稳过渡中力求试题创新。第19题立体几何考查考生的空间想象能力和勾股定理的逆定理的应用;还有理科第17题考查设计未知数和内角平分线成比例定理,问题本身不难但学生想不到就会产生害怕心理,文科第12题考查两曲线的切线问题。
二、以能力立意为主轴突出考查逻辑思维
2015年数学试题坚持多视角、多层次以能力立意考查学生的思维能力、运算能力、空间想象能力、实践能力、图表数据处理能力和创新意识、应用意识,特别注意到对“五个能力”和“两个意识”的内涵的重新界定的考查。
数学既是一门工具性的基础学科也是一门思维的科学,逻辑思维能力是数学能力的核心,一定思维量考查考生的思维能力;试题体现了文、理思维强度的高低异性,如应用导数研究函数性质的第21题,文科侧重于对已知条件进行比较、分析、综合、抽象与概括,给定条件下求参量的取值范围。理科试题更侧重于能用演绎、归纳和类比方法进行推理,命题设计以抽象思维与逻辑思维为主。
三、关注应用两个维度体现工具性应用性
数学应用意识有两个维度:其一是实际应用,试题的选择题与解答题都注意到,如文科中第18题,理科中第18题;其二是数学知识内部应用,如文、理科中第21题,就是应用导数研究函数的性质,理科第19题立体几何解答题的第Ⅱ问,就是应用向量知识解决空间的直线、平面的位置关系。数学源于生活实践,(3)证明两平面同垂直于一条直线。它也是解决实际问题的有力工具,实际应用能力是考生必须具备的数学素养。今年理科第18题选择以两组数据为背景的实际应用问题,体现了数学学科的工具性与应用性,也体现了高考改革中加强应用性的特点,这些试题接地气,贴近现实,充满了数学中生活,生活中有数学的应用气息。
四、突出重点兼顾全面注意数学思想方法
数学试题考点覆盖全面,兼顾对高中基础知识与基本技能的全面考查,特别对教材内容的考查,如程序框图问题考查了教材中的案例更相减损术,同时突出对重点考点重点考查。今年考试大纲中增加的“数学方法”与删除了“增强应用性和能力型”的提法得到了体现,没有出现增强应用性和能力性的试题,以解析几何为背景考查了分析问题解决问题的能力,第21题考查了分类讨论与整合思想,理科第10题考查了数形结合思想。
1/
16
2016
年高考数学(文科)考试大纲、考点分布表
一、考核目标与要求
数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处
理能力、以及应用意识、创新意识。
1、知识要求
对知识的要求分了解、理解、掌握三个层次(分别用
A、
B、
了解(
:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问
题中识别、认识它,
这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。
B)
:要求对所列知识的内容有较深刻的理性认识,知道知识间的逻辑关系,能对所列知识作正确的描述说明并用数学语言表达,能够利用所
学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述、说明、表达、表示、推测、想象、比较、别、判断,初步应用等,
掌握(
C)
:要求对所列知识的内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并加以解决,
这一层次所涉及的主要行为动词有:掌握、导出、分析、推导、证明、研究、讨论、2015四川高考数学试卷点评应用、解决问题等,
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、以及应用意识、创新意识。
(1
)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地7. 了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。分析出图形中基本元素及其相互关系;能对图形进行分解、
2018年福建高考数学试卷试题及解析(WORD版)
7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;2015年福建高考数学试卷试题及解析 1 .关注基础,凸显平稳
命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。
与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。
2 .注重综合,适度创新
命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。
命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等数列和等比数列的'定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。
3 .依托本质,突出能力
命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。
4 .强调应用,彰显选拔
命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。
命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。
此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。
1、本科进线率PK
6.三垂线定理及其逆定理; 7.两个平面的位置关系;南京:纯文化类,本一上线人数7780人左右,本一进线率38%;本二上线人数17500左右,本二进线率85%。
苏州:纯文化类,本一上线人数9865人,本一进线率40%;本二上线人数22862人,本二进线率92.5%。
无锡在进线总人数上没有南京和苏州多,原因是由于参加高考总人数相对较少,但是从进线率看,无论是本一还是本二,无锡以45.71%和94.29%的进线率占据优势,比苏州高出5.71%,比南京高出7.71%,本二进线率也是位居三市之首!
2、高分段人数及名校成绩PK
导语:高考数学就是多题型的考试,需要考生多做多总结,数学网整理了高考数学题型:多做典型题多归纳总结,帮助大家提升。接下来我将跟大家一起来分享关于高考数学大题题型总结,欢迎大家的借鉴参考!希望文章能够帮助到大家!
高考数学题型:多做典型题多归纳总结
多做典型题
众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,高中化学,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。
所说的“多”是指题目类型,而不仅仅单纯只是题目数量多。数学中题目多,通过合并,题目类型就有限了,只要把各种类型的题目各自做一定数量,加上细心领悟分析,就会发现题目的规律,进而归纳和总结出不同类型的题。
九、(B)直线、平面、简单何体(36课时,28个)善归纳总结
在复习过程中,不仅要做典型的题,而且还要善于归纳总结。有些同学就只喜欢做难题,而忽略了基础忽略了做题后的归纳与总结,总结出解题过程中的方法与技巧,总结出知识点内在的区别与联系。
实际上,所谓的难题、综合题都是由几个知识点综合在一起,如果你把基础打扎实了,各个知识点弄通了,难题综合题也就迎刃而解了,你没有发现吗?每个大题都有2-4个小问题,每个小问题单独掰开来看就是一个基础题,只不过是一个小问可能与前一个小问有关联而已。只要你善于去归纳总结,你就会发现各个知识点之间的内在联系,找到它们的关键的核心问题。
高考数学大题题型总结
一、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。
2、用代数规则对代数化后的问题进行处理。
高考解析几何解题套路及各步骤作规则
口诀:见点化点、见直线化直线、见曲线化曲线。
1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;
2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;
3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;
口诀:点代入直线、点代入曲线。
1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;
2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;
这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得的基础,就是解方程组的问题了。
3、在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。
二、立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
1.有关平行与垂直 (线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
四、导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的.学习,主要是以下几个方面:
1. 导数的常规问题:
(1)刻画函数(比初等方法细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机的发生存在着规律性和随机概率的意义。
6. 了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
8. 会计算7.二项式定理; 8.二项展开式的性质.在n次重复试验中恰好发生k次的概率。
2018年安徽高考数学试卷试题2012年 函式在 陕西高考数学 卷中占多少比例及解析(WORD版)
1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2015年安徽高考数学(文科)试卷的试题结构比较稳定,难度与去年相比略有下降,试题中的创新内容,反映了正由安徽卷向全国卷迈进的步伐。
试卷注重对基础知识、数学思想和方法的考查,考查内容涵盖全面且分层次地考查了考生对数学本质的理解能力及考生的数学素养和潜能。
试题主要特点:
1、考查全面,注重基础
2015年安徽高考数学(文科)试卷的试题在试题结构、难易度上都保持相对稳定,且略有下降,同时考查的知识点涵盖了高中阶段的所有重难点内容;注重基础知识、基本技能和基本方法的考查,注重通性通法的考察,解题计算量小、淡化解题技巧。
2、力求创新,平稳过渡
2015年安徽高考数学(文科)试卷每道试题设计自然,题干简明,学生回归课本;今年试卷的选择题、填空题仍侧重考查基础知识和基本方法,考查知识点单一,有助于考生发挥出自己的理想水平,而选择题第10题、填空题第14题和解答题第18题的设计源于课本,而又高于课本体现了试卷的'创新的特点。
解答题的问题设计任然保持这由易到难的特点,突出了对考生数学思维能力、应用意识和创新意识的考查。顺序遵循由易到难的排列原则,体现高考中的人文关怀精神;试题阅读量小,内容简洁,但解答过程中就会发现很多看似平凡的题目中透露一定的新意,试题上手容易,层次分明。
试题新亮点:
(一)创新题:
2.填空题第14题的设计源于课本图象的研究,同时又综合了函数的图象的平移和函数的性质,只有熟练掌握这些性质才能顺利王城此题;
3.解答题第18题的第(2)小问,创造性的设计了一个利用裂项相消法求和的数列,考生不易发现,给数学品质、数学成绩良好的考生,留有较大的发挥空间。
(二)易错题
1.选择题第7题,小数计算,以及条件的判断,容易使学生造成错误;
2.选择题第9题,虽然三视图转化为直观图较为简单,但是本题设计求表面积,对空间想象力不好的学生造成求侧面积错误;
3.解答题第16题,求最值,容易使成学生造成错误。
2018年高考数学占多少比例 1、2018年高考的数学科目仍然是150分,没有改变。
2、2018年高考除了浙江省和上海市进行了改革外,其它省份的高考科目没有公布。数学科目仍然是统考科目,数学科目的总分仍然是150分。
2012年陕西高考数学试卷函式与分析(函式、三角)总分为41分,比例为28%左右。 函式一直是考试的热点,重点考察函式的性质有单调性、奇偶性、值域、复合函式、分段函式等相关内容。三角函式2012年回避了热点,通过简单性质考察函式图象及求值问题。函式与导数问题2012年考察力度不足但和数列、线性规划结合源与课本略高于课本。
高考数学中几何、代数分别占多少比例?
各个地区的所占比例都不同,一般高考数学是按模组来分的,按照大题可以分为:三角函式板块,立体几何板块,概率统计板块,导数函式板块,解析几何板块,数列板块,这些板块所占比例会大一些,所占比例均在10%。
代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变数的概念和如何建立多项式并找出它们的根。代数的研究物件不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构型别有群、环、域、模、线性空间等。
高考数学部分占多例?
选择或者填空一般会有一道题目,高考数学每一册占得比例是多少?
没有专门考察的答题,只是一种数学语言的描述工具,在很多问题(诸如:问m的取值范围,a的取值范围)中要以的形式总结回答,使答题规范化就可以了。
其实文科、理科是有一些异的。不过一般来说,都是7:2:1,基础题百分之七十,中档题百分之二十,难题百分之十,但是高考每年都是不一样的,比如说它会一年简单,一年难,所以最终会在百分之十左右。所以,尽量不要去管什么难题,将基础题和中档题复习好,一定会有个不错的成绩。
高考数学满分的人大概占多例
每年各省份都会公布高考数学类满分的人数,一般是维持的10个左右!当然各省份不同,也会稍有偏你!【圆梦高考】
册函式所占比重,将近达到50%,其他几册分布比较均匀,
高考中数学基础题占多少比例
是基础题占百分之80,难题占百分之20,其中有百分之5是超难题。就我两次高考经历,难题是要做的,而且要常练习,不要听老师说什么昨晚基础题就好了,因为难题是基础题的结合考察方式,做好难题,基础当然就过了。
高考数学比例及分数
从大纲来看,今年的考试难度要降。这次大纲明确强调中低档题不低于70%,如果坚持这个尺度,今年的难度肯定要降。从两个要求降低的知识点来看,三角函式本来的要求就是强调作为工具。
高考数学每个知识都占多少分啊?
你所说的高考数学应该是理科的吧,每个知识所占分值不是固定的,一般按照知识的学时多少来分配,但也会考虑到知识点的重要性、难度等因素。下面是考点及学时:
必修(115个)
一、、简易逻辑(14课时,8个)
1.; 2.子集; 3.补集;
4.交集; 5.并集; 6.逻辑连结词;
7.四种命题; 8.充要条件.
1.对映; 2.函式; 3.函式的单调性;
4.反函式; 5.互为反函式的函式图象间的关系; 6.指数概念的扩充;
7.有理指数幂的运算; 8.指数函式; 9.对数;
10.对数的运算性质; 11.对数函式. 12.函式的应用举例.
三、数列(12课时,5个)
1.数列; 2.等数列及其通项公式; 3.等数列前n项和公式;
4.等比数列及其通顶公式; 5.等比数列前n项和公式.
四、三角函式(46课时17个)
1.角的概念的推广; 2.弧度制; 3.任意角的三角函式;
4,单位圆中的三角函式线; 5.同角三角函式的基本关系式;
6.正弦、余弦的诱导公式’ 7.两角和与的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切; 9.正弦函式、余弦函式的图象和性质;
10.周期函式; 11.函式的奇偶性; 12.函式 的图象;
13.正切函式的图象和性质; 14.已知三角函式值求角; 15.正弦定理;
16余弦定理; 17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量 2.向量的加法与减法 3.实数与向量的积;
4.平面向量的座标表示; 5.线段的定比分点; 6.平面向量的数量积;
7.平面两点间的距离; 8.平移.
1.不等式; 2.不等式的基本性质; 3.不等式的证明;
4.不等式的解法; 5.含的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;
4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;
10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的引数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的引数方程;
4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;
7.抛物线的简单几何性质.
1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;
4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;
8.空间向量及其加法、减法与数乘; 9.空间向量的座标表示;
10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;
13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;
16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;
19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;
25.棱柱; 26.棱锥; 27.正多面体; 28.球.
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’
4.组合; 5.组合数公式; 6.组合数的两个性质;
十一、概率(12课时,5个)
1.随机的概率; 2.等可能的概率; 3.互斥有一个发生的概率;
选修Ⅱ(2数学成绩发布南京,其次是苏州和无锡4个)
十二、概率与统计(14课时,6个)
1.离散型随机变数的分布列; 2.离散型随机变数的期望值和方; 3.抽样方法;
4.总体分布的估计; 5.正态分布; 6.线性回归.
十三、极限(12课时,6个)
1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;
4.函式的极限; 5.极限的四则运算; 6.函式的连续性.
十四、导数(18课时,8个)
1.导数的概念; 2.导数的几何意义; 3.几种常见函式的导数;
4.两个函式的和、、积、商的导数; 5.复合函式的导数; 6.基本导数公式;
7.利用导数研究函式的单调性和极值; 8函式的值和最小值.
十五、复数(4课时,4个)
1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;
4.数系的扩充.
这就是一种计算有多少把握的方法啦。
C表示)且高一级层次包括低一级层次的要求。k平方那一行是一个计算公式,不要求理解,考试一般都会给出来,你把数据带到公式里面去算,在根据k平方下面的那个表无锡:纯文化类,本一上线人数:7745人,本一进线率45.71%,本二上线人数15975人,本二进线率94.29%。格就能判断有多大的把握了。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。