【 #课件# 导语】课件是教师对课堂教学的一种预计和构想,在教学中占有十分重要的地位。课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,巧设课件,激发兴趣,可以给语文学习动力。 考 网为大家准备了以下课件,希望对你们有帮助!
全等三角形单元教学设计_全等三角形单元教学设计说明
全等三角形单元教学设计_全等三角形单元教学设计说明
全等三角形单元教学设计_全等三角形单元教学设计说明
小学数学《全等三角形》课件篇一
一、教学目标
【知识与技能】
掌握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】
经历探索三角形全等条件的过程,体会利用作、归纳获得数学结论的过程。
【情感、态度与价值观】
在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。
二、教学重难点
【教学重点】
“角角边”三角形全等的探究。
【教学难点】
将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程
(一)引入新课
利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)
(四)小结作业
提问:今天有什么收获?还有什么疑问?
课后作业:书后相关练习题。
小学数学《全等三角形》课件篇二
全等三角形
课题:全等三角形
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1)投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对长边(或角)是对应边(或对应角),一对短边(或小的角)是对应边(或对应角)
4、课堂练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
小学数学《全等三角形》课件篇三
教学目标
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
[重点]
探究全等三角形的性质
[难点]
能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。
教学流程安排
活动1利用电脑投影观察图形,探究得出全等图形的概念
活动2观察平移、翻折、旋转的两个图形
活动3全等形的练习
活动4观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。
活动5探究全等三角形的性质
(课件演示)
活动6全等三角形性质的运用
活动7小结,布置作业
观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。
利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。
巩固全等性的概念
利用两个形状和大小相同的三角形通过平移
及自己动手作比较得出全等形三角形的概念。
通过图形的变换,形成对应的概念,获得全等形三角形的性质。
运用全等三角形性质解决问题
回顾反思,进一步理解和掌握全等三角形的概念及全等三角形的性质
教学过程设计
问题与情景
师生行为
设计意图
活动1
(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?
(2)你能再举出生活中的一些实际例子吗?
(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?
教师演示课件,提出问题,学生思考、交流。
学生思考发表见解。
学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。
教师给出全等形的概念。
教师提出要求,学生动手作,并做观察、回答问题。
本次活动中,教师应重点关注:
(1)
学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;
(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。
运用贴近学生生活的图案激发学生探究的兴趣。
通过问题(1),学生从图形的形状与大小的角度去观察图形。
图形全等形、在生活中大量存在,创设这样的问题情境,学生有意注意,激发学生主动思考和联想;学生进一步联系生活,激发探究欲望。
通过动手实践,获得全等形的体验。
[活动2]
观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?
教师提出要求。
学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。
培养学生对图形的识别能力。
[活动3]
对全等形知识的练习。
教师提问。
学生思考回答问题。
学生能准确快速的找出。
运用全等形的概念
[活动]4
问题
动手作,将剪得的两个三角形纸板重合放在图中
△ABC的位子上,试一试:
如:教科书图13.1、图13.2、
图13.3
观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?
教师提出要求。
学生用两个三角形纸板实践
教师用课件展示。
学生猜测,发表意见得出全等三角形的概念。
教师应关注:
(1)
对实践作的理解。
(2)
是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。
学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。
[活动]5
问题
课件演示:
(1)
将两个三角形完全重合,观察并指出重合的顶点、边和角。
(2)
如何用数学符号表示两个三角形全等呢?
(3)
观察两个三角形找出对应边、对应角。
(4)观察重合的两个三角形对应边、对应角的关系。
教师课件演示提出问题。
学生实践交流得出结论。
教师给出对应顶点、对应边、对应角的概念并板书。
学生观察并回答问题。教师学生归纳总结得出三角形的性质并板书。
教师应关注:
(1)
对应顶点、对应边、对应角的概念的理解。
(2)
全等符号的书写。
(3)
全等三角形性质的理解。
在教师演示课件的过程中,学生建立对应的概念。
学生学会掌握全等三角形的表达方式,会使用全等符号。
学生掌握全等三角形的性质。
[活动]6
(1)
课件演示提出问题:
填一填:(如下图)
(2)
练一练:
如图,已知ΔOCA≌ΔOBD,
请说出它们的对应边和对应角。
CB
AD
(3)拓广探索:
如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm,∠DAM=39°,则AN=___cm,NM=___cm,∠NAB=___.
教师提出问题。
学生分组探究。
观察学生能否快速找出对应的边与角。
教师利用课件演示提问。
学生再一次对对应边与角的掌握。
教师提问。
学生思考回答并说出解题过程。
教师给出解题。
本次活动中,教师关注的重点:
(1)
学生能否快速准确的找出对应边、对应角。
(2)
学生对全等三角形的性质的理解。
(3)
同学之间的交流与活动参与程度。
学生掌握对应边、对应角的找法
进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。
运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。
[活动]7
(1)
小结:谈谈本次活动的所获得的收获。
(2)
布置课后作业
教科书92页习题1。
学生分组总结。
教师布置作业,学生课后完成。
本次活动中,教师应重点关注:
(1)
对知识的梳理、总结的习惯。
(2)
小组合作意识
(3)
学生对本节内容的理解程度。
(4)
学生对全等三角形的情感认识。
加深学生对知识的理解,促进学生对课堂的反思。
巩固、提高、反思。使学生对知识的掌握。
全等三角形对应边相等,对应角相等,八年级上册第十一章的数学所讲的内容就是全等三角形。下面是由我整理的,希望对您有用。
:全等三角形
教学目标
①通过例项理解全等形的概念和特征,并能识别图形的全等.
②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.
③能运用性质进行简单的推理和计算,解决一些实际问题.
④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.
教学重点与难点
重点:全等三角形的有关概念和性质.
难点:理解全等三角形边、角之间的对应关系.
教学设计
问题情境
1.展现生活中的大量.
片断1:图案.
片断2:教科书第90页的3幅图案.
2.学生讨论:
1从上面的片断中你有什么感受?
2你能再举出生活中的一些类似例子吗?
学生分组讨论、思考探究
1.上面这些图形有什么共同的特征?
2.有人用“全等形”一词描述上面的图形,你认为这个词是什么含义? 教师明晰。建立模型
1.给出“全等形”、“全等三角形”的定义.
2.列举反例,强调定义的条件.
3.提出问题“你能构造一对全等三角形”吗?你是如何构造的,与同伴交流.
4.全等三角形的对应元素及性质:教师结合手中的教具说明对应元素顶点、边、角的含义,并学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等教师启发学生根据“重合”来说明道理.
解析、应用与拓广
1.以图13.1-1中的两个三角形为例,介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法,并说出图13.1—2、图13.1—3的对应顶点、对应边、对应角,写出相等的边和角解释“≌”的含义和读法,并强调对应顶点写在对应位置上.
2.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.
3.学生运用自制的两块全等三角形模板,用平移、翻折、旋转等方法,先拼出教科书92~93页中的5个图形,说出它们的对应顶点、对应边、对应角,再与同伴交流,你还能拼出其他图形吗?
拓展与延伸
1.例1 已知△ABC≌△DFE,∠A=96°,∠B=25°,DF=10cm.求∠E的度数及AB的长.
随堂练习
注:检查学生对本节课的掌握情况.
1.全等用符号__表示.读作__.
2.△ABC全等于三角形△DEF,用式子表示为__.
3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与__是对应角;AB与__是对应边,BC与__是对应边,AC与__是对应边.
4.判断题:
1全等三角形的对应边相等,对应角相等.
2全等三角形的周长相等.
3面积相等的三角形是全等三角形.
4全等三角形的面积相等.
5.找出由七巧板拼成的图案中的全等三角形.
小结提高
1.回忆这节课:在自己动手实际作中,得到了全等三角形的哪些知识? 注:对于学生的发言,教师要给予肯定的评价.
2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;
3.在运用全等三角形的定义和性质时应注意规范书写格式.
布置作业
1.必做题:教科书92页习题13.1第1题,第2题,第3题.
2.选做题:教科书92页习题13.1第4题.
教学后记
:三角形全等的条件1
教学目标
①经历探索三角形全等条件的过程,体会利用作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性.
③通过对问题的共同探讨,培养学生的协作精神.
教学重点与难点
重点:指导学生分析问题,寻找判定三角形全等的条件.
难点:三角形全等条件的探索过程.
教学设计
复习过程,引入新知
带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
创设情境,提出问题
根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C'满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?
让学生按照下面给出的条件作出三角形.
1三角形的两个角分别是30°、50°.
2三角形的两条边分别是4 cm,6 cm.
3三角形的一个角为30°,一条边为3 cm.
再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
通过交流,归纳得出结论:
三边对应相等的两个三角形全等SSS.
同时也明确判定三角形全等需要三个条件.
应用新知,体验成功
实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的例项.
注:让学生体验数学在生活中应用的广泛性.
给出例1,如图△ABC是一个钢架,AB=AC,AD是连线点A
与BC中点D的支架,求证△ABD≌△ACD.
巩固练习
教科书第96页的思考及练习.
反思小结
掌握数学规律.
再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验. 作业
1.必做题:教科书第103页习题13.2中的第1、2题.
2.选做题:教科书第104页第9题.
教学后记
:三角形全等的条件2
教学目标
①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
③通过对问题的共同探讨,培养学生的协作精神.
教学重点与难点
重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等. 难点:指导学生分析问题,寻找判定三角形全等的条件.
教学设计
创设情境,引入课题
出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.
教师点拨,学生边学边画图,再让学生把画好的ΔA'B'C'剪下,放在ΔABC上,观察这两个三角形是否全等.
交流对话,探求新知
根据前面的作,鼓励学生用自己的语言来总结规律:
两边和它们的夹角对应相等的两个三角形全等.SAS
注:培养学生的概括能力和语言表达能力.
补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边. 注:归纳、分析得到的规律,使学生有更深刻的认识和理解.
应用新知,体验成功
出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连线AC并延长到D,使CD=CA,连线BC并延长到E,使CE=CB.连线DE,那么量出DE的长就是A、B的距离,为什么?
再次探究,释解疑惑
出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.
教师演示:方法一教科书98页图13.2-7.
方法二通过画图,让学生更直观地获得结论.
巩固练习
教科书第99页,练习12.
小结
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.
注:通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构,形成解题经验.
作业
1.必做题:教科书第104页,习题13.2第3、4题.
2.选做题:教科书第105页第10题.
教学后记
全等三角形教案
1.只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
五、课堂小结
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
六、布置作业
必做题:课本P44页习题12.2中的第6,选做题:第11题
七、板书设计
课 题 :12.2.4三角形全等的判定《4》
【教学目标】:
知识与技能:直角三角形全等的条件:“斜边、直角边”.
过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.
情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “HL”.学生一定能理解。
课前准备 全等三角形纸片、三角板、
【教学过程】:
一、提出问题,复习旧知
1、判定两个三角形全等的方法: 、 、 、
2、如图,Rt△ABC中,直角边是 、 ,斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(3)若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(4)若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
二 、创设情境,导入新课
如图,舞台背景的形状是两个直角三角形,想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
(1)[生]能有两种方法.
种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.
第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.
可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.
[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?
三、探究
做一做:
已知线段AB=5c,BC=4c和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?
(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体演示,激发学习兴趣).
作法:
步:作∠MCN=90°.
第二步:在射线CM上截取CB=4c.
第三步:以B为圆心,5c为半径画弧交射线CN于点A.
第四步:连结AB.
就可以得到所想要的'Rt△ABC.(如下图所示)
将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.
可以验证,对一般的直角三角形也有这样的规律.
探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).
[师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.
四、例题:
[例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了.
证明:∵AC⊥BC,BD⊥AD
∴∠D=∠C=90°
在Rt△ABC和Rt△BAD中
∴Rt△ABC≌Rt△BAD(HL)
∴BC=AD.
[例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?
[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.
证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°
∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL)
∴∠ABC=∠DEF
即两滑梯的倾斜角∠ABC与∠DFE互余.
五、课时小结
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS)
4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中)
六、布置作业
必做题: 课本P44页习题12.2中的第7,8,选做题:12,13题
七、板书设计
一、教学目标 1.学生在教师下,在积极主动地经历探索三角形全等条件的过程中,体会利用作归纳而获得数学知识的过程。 2.掌握三角形全等“边边边”的判定方法,能用三角形的全等性质解决一些实际问题。
3.培养学生的推理能力,发展表达能力,积累数学活动经验。
二、教学重点与难点
重点:三角形全等条件的探索过程和运用“边边边”规律解决问题。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要作出全面、正确的分析,并对各种情况进行讨论,这对他们来说确有一定难度。
1.学习方式。为了使学生更好地掌握这一部分内容,就要遵循启发式教学的原则,多以设问形式创设问题情景。如涉及实践活动,就应学生作、观察、探索、交流、发现、思维,使之经历从现实世界抽象出几何模型并运用所学知识解决实际问题的过程,真正把学生放在主置上。
2.课前准备:教师准备一张画有两个全等三角形的白纸。
三、教学过程
1.创设情景,导入新课。
师:大家看几幅美丽(投影出示)
部分学生:噢!好漂亮的。
部分学生:这些都是由三角形组成的。
生1:这些三角形大小那么一致,都是全等的吧?
师:对!这些美丽的都是由全等三角形组成的,大家想不想自己用全等三角形设计几幅美丽的呢?
生:(齐答):想!
生2:怎样画三角形,画出来的三角形才全等?
生3:画全等三角形需要满足什么条件?
师:问得好!三角形全等需要什么条件呢?这就是我们这节课需要研究的问题。
(出示课题)
点评1:通过投影出示几幅美丽的图案,让学生在感受美的同时激发创造美的意识,培养学习和探索的兴趣,从而调动了学习的积极性。
2.师生互动,探求新知。
师:(出示课前准备的两个三角形)这张白纸上有两个三角形(如下图),在△ABC和△A′B′C′中,A′B′=AB,B′C′=BC,A′C′=AC,∠A=∠A′,∠B=∠B′,∠C=∠C′,大家猜猜这两个三角形全等吗?
部分学生:全等。
师:我们能否想个办法来验证这两个三角形是否全等?
生4:我们把其中一个剪下来,看是否与另一个重合,若是重合的,那么这两个三角形就全等。
师:对(老师把其中一个剪下来,放在另一个三角形上)大家看,这两个三角形全等吗?
生(齐答):全等。
师:我们从上面的活动中可以看出,满足什么条件的两个三角形一定全等?
部分学生:三条边分别对应相等,三个角分别对应相等。
师:但是,两个三角形全等是否一定需要六个条件?条件能否尽量少些。大家猜猜可能需要几个条件?
生5:5个条件。
生6:1个条件。
生7;3个条件
师:大家说了这么多种情况,我们就从少的1个条件开始考虑,同时,请大家思考1个条件包括哪些情况。
生8:一边相等。
生9:一边相等;一角相等。
师:对!一个条件包括两种情况:①一边相等;②一角相等。那么,请大家通过画图来探究只有一个相等条件的两个三角形是否全等?
(学生在演草纸上画图,教师适时进行点拨、指导,对某些有困难的学生给予帮助、鼓励,教师收集学生作品,并展示学生作品)
(图1公共边型)(图2公共边型)
师:从上面的图画中,我们可以得出:两个三角形中只有一个条件相等,这两个三角形不一定全等。
点评2:教师提出问题并帮助学生分类后,要让学生自己动手作,画图验证,这样才能充分培养学生的动手作能力,为他们提供一个自主探索的空间。
3.自主探索,探究发现。
师:下面我们来研究具有两个相等条件的两个三角形是否全等。在研究之前,我们先分析两个条件分哪几种情况。
生10:两边相等;两角相等。
生11:两边相等;两角相等;一边相等,一角相等。
师:我们综合以上同学的回答得出两个条件分三种情况:①两边相等;②两角相等;③一边相等,一角相等。这样的三角形是否全等,需要大家画图验证。
(学生分小组画图,可以进行分工合作,让部分学生画两边相等,部分学生画两角相等,另一部分画一角相等,一边相等。然后一起交流,看每种情况是否全等。画完之后,教师找每组学生代表回答,并展示自己组内的作品。)
师:所以,只具备两个相等条件的三角形,不一定全等。
点评3:用开放性的教学方法,让学生积极参与课堂讨论,并且通过学生自己动手画图、比较归纳等自主探索活动及师生之间、生生之间的合作交流活动,使他们获取知识和能力。
师:下面,我们就来研究具有三个相等条件的两个三角形是否全等,那么,三个条件又可以分成哪些情况呢?
生12:三角相等;三边相等。
生13:两边、一角相等;两角、一边相等。
师:我们今天先研究三角相等和三边相等的两个三角形是否全等。
生14:刚才在画图的时候,我发现我们组有很多同学用的三角板虽然大小不一样,但却都有一个是等腰直角的。(一边说一边举起两个大小不一样的等腰直角三角板,它们两个虽然三对角对应相等,但是不全等。)
师:这位同学非常细心,他的发现非常正确:老师用的三角板和同学们用的三角板都有一个为等腰直角的,但显然不重合,所以三角对应相等的两个三角形不一定全等,我们来看下面这个题目。
(投影出示)
如图8:已知△ABC,画一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC。
师:我们画三角形需要确定它的三个顶点,我们如何才能确定△A′B′C′的顶点呢?
生15:我们先画一条边B′C′,使B′C′=BC,就可以确定两个顶点。
师:点A′和B′的距离为多少?点A′和C′的距离为多少?
生16:A′B′=AB。
师:我们怎样做才能使A′B′=AB。
生17:以B′为圆心,以AB的长为半径画弧。
师:同样的道理,我们以C′为圆心,以AC的长为半径画弧,两弧交点就A′,老师演示作图过程,请同学们说出三个主要的步骤。
(投影出示)任意画一个△ABC,然后画△A′B′C′,使A′B′=AB,B′C′=BC,A′C′= AC。
学生画完图后,将其中一个三角形剪下来,放在另一个上面,看两个三角形是否全等,并与小组中其他同学交流意见,教师收集学生作品,并展示学生代表的作品。
生18:有△ABC和△A′B′C′,且A′B′=AB,B′C′=BC,A′C′=AC,我将其中一个剪下来,放在另一个上面,发现它们是完全重合的,所以这两个三角形全等。(如图9)
师:我们从上面的活动中发现:三边对应相等的两个三角形全等,简写为(SSS)。(并板书)
4.应用知识,解决问题。(投影出示)
例1.如图10:△ABC是一个支架,AB=AC,AD是连接点A与BC的中点D的支架,求证:△ABC≌△ACD。
师:我们想证明两个三角形全等需要几个条件?为什么?
生19:需要三个条件,由边边边规律可知。
师:题目之中已有哪些条件。
生20:AB=AC。
生21:还有一个公共边AD=AD。
师:对学生回答总结归纳并板书:
证明:∵D是BC的中点
∴BD=CD
∴在△ABC和△ACD中
AB=AC
BD=CD
AD=AD
∴△ABC≌△ACD(SSS)
变式:①证明∠B=∠C②∠AD⊥BC③DA平分∠BAC
点评4:在教师的下学会画全等三角形后,让学生在“画一画”、“剪一剪”、“比一比”等一系列活动中,自己得出规律,从而充分培养了学生乐于动手、勤于实践的意识和习惯,切实提高了学生的动手能力、实践能力。因此,要注重学生体验知识的形成过程,学会运用所学知识解决问题。
5.课堂练习巩固拓展:见教材P96思考;P96练习。
(运用所学知识解决实际问题)
6.课堂小结:这节课你学到了什么知识?有什么收获?
7.课外活动。用一些全等三角形设计一个美丽的图案,在下节课上进行交流,看谁设计的图案美观、新颖。
四、总评
1.本节课强调学生动手作,自主探究,注重师生之间的互相合作交流。在一系列探究活动中培养了学生乐于动手、勤于实践的意识和习惯,切实提高了学生的动手能力、实践能力,并注重学生体验知识的形成过程,从而获取知识和能力。
2.注重转变学生的学习方式。本节课的教学内容主要采用了讨论法,即课堂上教师(或学生)提出适当的数学问题,通过学生与学生(或老师)之间相互讨论、相互学习,在问题的解决过程中发现新知识。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师则通过对学生参与学习进行启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对他们主体意识和创新能力的培养有着积极的意义。
作为一名为他人授业解惑的教育工作者,时常要开展说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是我为大家整理的《探索三角形全等的条件》说课稿,仅供参考,希望能够帮助到大家。
《探索三角形全等的条件》说课稿1
一、说教材
全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法
本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断学生动手、动口、动脑。积极参与教学过程,才能完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考
根据练习情况设疑,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具作体会,终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手作体会全等三角形。
四、说教学流程
本节课的教学过程是:首先,展示教师制作的一些图案,学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的.位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。
《探索三角形全等的条件》说课稿2
一.说教材
全等三角形是八年级上册数学教材第十三章节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
(一)、教学目标:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。
(二)、说教学重点、难点
重点:全等三角形的概念、性质
难点:找对应顶点、对应边和对应角
二、说教法
1、发现法
在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
2、谈话法
在师生对话、问答的过程中,用谈话的方式学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。
三、说学法
1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,学生踏上自主学习之路。
2、看听结合,形成表象。
3、手脑结合,自主探究。
四、教学流程设计
1、情景导入
课前展示背景为悉尼歌剧院的倒影的(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)
展示我国某地一幅风景,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。
2、探求新知
展示国旗和福娃的等,提出问题(同时使学生感知,在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个人而感到自豪、骄傲)
3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。
4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。
5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。
6、小结提高
通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)
7、拓展与延伸(合作交流完成探究题)
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形。接下来我为你苏教版全等三角形教案,一起看看吧!
苏教版全等三角形教案(一)
【教学目标】
知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.
过程与方法:经历探究全等三角形条件的过程,体会利用作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.
情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.
教学重点:三角形全等的条件.
教学难点:寻求三角形全等的条件.
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。
课前准备 全等三角形纸片、三角板、 【教学过程】:
一、创设情境,导入新课
[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?
[生]三内角、三条边、两边一内角、两内角一边.
[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.
(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?
[生]两种.
1.两边及其夹角.
2.两边及一边的对角.
[师]按照上节方法,我们有两个问题需要探究.
(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?
探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?
学生活动:
1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.
2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.
教师活动:
教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.
二 、探究
作结果展示:
对于探究1:
画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.
1.画∠DA/E=∠A;
2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;
3.连结B/C/.
将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).
小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.
如图,在△ABC和△DEF中,
对于探究2:
学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可学生总结画图方法:
1.画∠DB/E=∠B;
2.在射线B/D上截取B/A/=BA;
3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.
也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.
归纳总结:
“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:
两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)
三、应用举例
[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?
[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.
在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.
证明:在△ABC和△DEC中
所以△ABC≌△DEC(SAS)
所以AB=DE.
1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
四、练习
1. 已知: AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
2.已知:AB=AC、AD=AE、∠1=∠2(图4).
求证:△ABD≌△ACE.
五、课堂小结
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
六、布置作业
必做题:课本P43——44页习题12.2中的第3,选做题:第4题题
七、板书设计
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。